[][src]Struct owning_ref::OwningRefMut

pub struct OwningRefMut<O, T: ?Sized> { /* fields omitted */ }

An mutable owning reference.

This wraps an owner O and a reference &mut T pointing at something reachable from O::Target while keeping the ability to move self around.

The owner is usually a pointer that points at some base type.

For more details and examples, see the module and method docs.

Methods

impl<O, T: ?Sized> OwningRefMut<O, T>[src]

pub fn new(o: O) -> Self where
    O: StableAddress,
    O: DerefMut<Target = T>, 
[src]

Creates a new owning reference from a owner initialized to the direct dereference of it.

Example

extern crate owning_ref;
use owning_ref::OwningRefMut;

fn main() {
    let owning_ref_mut = OwningRefMut::new(Box::new(42));
    assert_eq!(*owning_ref_mut, 42);
}

pub unsafe fn new_assert_stable_address(o: O) -> Self where
    O: DerefMut<Target = T>, 
[src]

Like new, but doesn’t require O to implement the StableAddress trait. Instead, the caller is responsible to make the same promises as implementing the trait.

This is useful for cases where coherence rules prevents implementing the trait without adding a dependency to this crate in a third-party library.

pub fn map<F, U: ?Sized>(self, f: F) -> OwningRef<O, U> where
    O: StableAddress,
    F: FnOnce(&mut T) -> &U, 
[src]

Converts self into a new shared owning reference that points at something reachable from the previous one.

This can be a reference to a field of U, something reachable from a field of U, or even something unrelated with a 'static lifetime.

Example

extern crate owning_ref;
use owning_ref::OwningRefMut;

fn main() {
    let owning_ref_mut = OwningRefMut::new(Box::new([1, 2, 3, 4]));

    // create a owning reference that points at the
    // third element of the array.
    let owning_ref = owning_ref_mut.map(|array| &array[2]);
    assert_eq!(*owning_ref, 3);
}

pub fn map_mut<F, U: ?Sized>(self, f: F) -> OwningRefMut<O, U> where
    O: StableAddress,
    F: FnOnce(&mut T) -> &mut U, 
[src]

Converts self into a new mutable owning reference that points at something reachable from the previous one.

This can be a reference to a field of U, something reachable from a field of U, or even something unrelated with a 'static lifetime.

Example

extern crate owning_ref;
use owning_ref::OwningRefMut;

fn main() {
    let owning_ref_mut = OwningRefMut::new(Box::new([1, 2, 3, 4]));

    // create a owning reference that points at the
    // third element of the array.
    let owning_ref_mut = owning_ref_mut.map_mut(|array| &mut array[2]);
    assert_eq!(*owning_ref_mut, 3);
}

pub fn try_map<F, U: ?Sized, E>(self, f: F) -> Result<OwningRef<O, U>, E> where
    O: StableAddress,
    F: FnOnce(&mut T) -> Result<&U, E>, 
[src]

Tries to convert self into a new shared owning reference that points at something reachable from the previous one.

This can be a reference to a field of U, something reachable from a field of U, or even something unrelated with a 'static lifetime.

Example

extern crate owning_ref;
use owning_ref::OwningRefMut;

fn main() {
    let owning_ref_mut = OwningRefMut::new(Box::new([1, 2, 3, 4]));

    // create a owning reference that points at the
    // third element of the array.
    let owning_ref = owning_ref_mut.try_map(|array| {
        if array[2] == 3 { Ok(&array[2]) } else { Err(()) }
    });
    assert_eq!(*owning_ref.unwrap(), 3);
}

pub fn try_map_mut<F, U: ?Sized, E>(self, f: F) -> Result<OwningRefMut<O, U>, E> where
    O: StableAddress,
    F: FnOnce(&mut T) -> Result<&mut U, E>, 
[src]

Tries to convert self into a new mutable owning reference that points at something reachable from the previous one.

This can be a reference to a field of U, something reachable from a field of U, or even something unrelated with a 'static lifetime.

Example

extern crate owning_ref;
use owning_ref::OwningRefMut;

fn main() {
    let owning_ref_mut = OwningRefMut::new(Box::new([1, 2, 3, 4]));

    // create a owning reference that points at the
    // third element of the array.
    let owning_ref_mut = owning_ref_mut.try_map_mut(|array| {
        if array[2] == 3 { Ok(&mut array[2]) } else { Err(()) }
    });
    assert_eq!(*owning_ref_mut.unwrap(), 3);
}

pub unsafe fn map_owner<F, P>(self, f: F) -> OwningRefMut<P, T> where
    O: StableAddress,
    P: StableAddress,
    F: FnOnce(O) -> P, 
[src]

Converts self into a new owning reference with a different owner type.

The new owner type needs to still contain the original owner in some way so that the reference into it remains valid. This function is marked unsafe because the user needs to manually uphold this guarantee.

pub fn map_owner_box(self) -> OwningRefMut<Box<O>, T>[src]

Converts self into a new owning reference where the owner is wrapped in an additional Box<O>.

This can be used to safely erase the owner of any OwningRefMut<O, T> to a OwningRefMut<Box<Erased>, T>.

pub fn erase_owner<'a>(self) -> OwningRefMut<O::Erased, T> where
    O: IntoErased<'a>, 
[src]

Erases the concrete base type of the owner with a trait object.

This allows mixing of owned references with different owner base types.

Example

extern crate owning_ref;
use owning_ref::{OwningRefMut, Erased};

fn main() {
    // NB: Using the concrete types here for explicitnes.
    // For less verbose code type aliases like `BoxRef` are provided.

    let owning_ref_mut_a: OwningRefMut<Box<[i32; 4]>, [i32; 4]>
        = OwningRefMut::new(Box::new([1, 2, 3, 4]));

    let owning_ref_mut_b: OwningRefMut<Box<Vec<(i32, bool)>>, Vec<(i32, bool)>>
        = OwningRefMut::new(Box::new(vec![(0, false), (1, true)]));

    let owning_ref_mut_a: OwningRefMut<Box<[i32; 4]>, i32>
        = owning_ref_mut_a.map_mut(|a| &mut a[0]);

    let owning_ref_mut_b: OwningRefMut<Box<Vec<(i32, bool)>>, i32>
        = owning_ref_mut_b.map_mut(|a| &mut a[1].0);

    let owning_refs_mut: [OwningRefMut<Box<Erased>, i32>; 2]
        = [owning_ref_mut_a.erase_owner(), owning_ref_mut_b.erase_owner()];

    assert_eq!(*owning_refs_mut[0], 1);
    assert_eq!(*owning_refs_mut[1], 1);
}

pub fn as_owner(&self) -> &O[src]

A reference to the underlying owner.

pub fn as_owner_mut(&mut self) -> &mut O[src]

A mutable reference to the underlying owner.

pub fn into_owner(self) -> O[src]

Discards the reference and retrieves the owner.

Trait Implementations

impl<O, T: ?Sized> Send for OwningRefMut<O, T> where
    O: Send,
    &'a mut T: Send
[src]

impl<O, T: ?Sized> Sync for OwningRefMut<O, T> where
    O: Sync,
    &'a mut T: Sync
[src]

impl<O, T: ?Sized> Ord for OwningRefMut<O, T> where
    T: Ord
[src]

fn max(self, other: Self) -> Self1.21.0[src]

Compares and returns the maximum of two values. Read more

fn min(self, other: Self) -> Self1.21.0[src]

Compares and returns the minimum of two values. Read more

fn clamp(self, min: Self, max: Self) -> Self[src]

🔬 This is a nightly-only experimental API. (clamp)

Restrict a value to a certain interval. Read more

impl<O, T: ?Sized> From<O> for OwningRefMut<O, T> where
    O: StableAddress,
    O: DerefMut<Target = T>, 
[src]

impl<O, T: ?Sized> From<OwningRefMut<O, T>> for OwningRef<O, T> where
    O: StableAddress,
    O: DerefMut<Target = T>, 
[src]

impl<O, T: ?Sized> Eq for OwningRefMut<O, T> where
    T: Eq
[src]

impl<O, T: ?Sized> PartialOrd<OwningRefMut<O, T>> for OwningRefMut<O, T> where
    T: PartialOrd
[src]

#[must_use]
fn lt(&self, other: &Rhs) -> bool
1.0.0[src]

This method tests less than (for self and other) and is used by the < operator. Read more

#[must_use]
fn le(&self, other: &Rhs) -> bool
1.0.0[src]

This method tests less than or equal to (for self and other) and is used by the <= operator. Read more

#[must_use]
fn gt(&self, other: &Rhs) -> bool
1.0.0[src]

This method tests greater than (for self and other) and is used by the > operator. Read more

#[must_use]
fn ge(&self, other: &Rhs) -> bool
1.0.0[src]

This method tests greater than or equal to (for self and other) and is used by the >= operator. Read more

impl<O, T: ?Sized> AsMut<T> for OwningRefMut<O, T>[src]

impl<O, T: ?Sized> PartialEq<OwningRefMut<O, T>> for OwningRefMut<O, T> where
    T: PartialEq
[src]

#[must_use]
fn ne(&self, other: &Rhs) -> bool
1.0.0[src]

This method tests for !=.

impl<O, T: ?Sized> AsRef<T> for OwningRefMut<O, T>[src]

impl<O, T: ?Sized> DerefMut for OwningRefMut<O, T>[src]

impl<O, T: ?Sized> Debug for OwningRefMut<O, T> where
    O: Debug,
    T: Debug
[src]

impl<O, T: ?Sized> Deref for OwningRefMut<O, T>[src]

type Target = T

The resulting type after dereferencing.

impl<O, T: ?Sized> Hash for OwningRefMut<O, T> where
    T: Hash
[src]

fn hash_slice<H>(data: &[Self], state: &mut H) where
    H: Hasher
1.3.0[src]

Feeds a slice of this type into the given [Hasher]. Read more

impl<O, T: ?Sized> StableDeref for OwningRefMut<O, T>[src]

Blanket Implementations

impl<T> Erased for T[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> Any for T where
    T: 'static + ?Sized
[src]